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Abstract. For a two-component superlattice arranged in the quasi-periodic Fibonacci 
sequence, the optical reflectivity is calculated as function of the angle of incidence, and its 
connection with the gap structure of the frequency dispersion of the electromagnetic field is 
demonstrated. Gap modes as guided waves under boundary conditions corresponding to 
total reflection are also discussed. For the analogous case of elastic waves of shear horizontal 
polarisation, the surface spectral function is calculated, which is related to the Brillouin 
scattering cross section. The shape of this function is dominated by peaks due to localised 
modes, and it shows self-similar structures. 

1. Introduction 

The fabrication of superlattices composed of two different types of layers ordered in the 
Fibonacci sequence, first reported by Merlin et al [ 11, has provided a physical realisation 
of a one-dimensional quasi-periodic structure. The study of this type of superlattice may 
on the one hand augment our general knowledge about the properties of quasi-periodic 
crystal structures, but on the other it has become an interesting field of research on its 
own. A variety of physical properties have already been studied in these systems, among 
others also the transmission of TE-polarised light [2 -4 ]  and acoustic phonons [5].  

In the present investigation, the normal modes of the electromagnetic field for both 
TE- and TM-polarisation and of the displacement field with shear horizontal polarisation 
in a Fibonacci superlattice are considered and are treated on the same footing. The 
electromagnetic problem can in fact be regarded as formally being a special case of its 
acoustic counterpart, and longitudinal phonons under normal incidence can also be 
treated in the same way. Concerning the problem of the propagation of light, we extend 
the results obtained in [2 -4 ]  by discussing the gap structure in the cole plane, where U) 

is the frequency of light and 8 the angle of incidence. In particular, we address ourselves 
to  the case of TM-polarised modes, where the Brewster phenomenon occurs [ 6 ] ,  causing 
the frequency gaps to vanish for a certain angle of incidence. As a quantity which is easily 
accessible experimentally, in which the gap structure can be made visible, we calculate 
the optical reflectivity of a semi-infinite Fibonacci superlattice as a function of the angle 
of incidence and discuss the influence of the imaginary parts of the dielectric constants 
of the two materials. 
t Permanent address: Institut fur Theoretische Physik 11, Westfalische Wilhelms-Universitat, D-4400 
Munster, Wilhelm-Klemm-Strasse 10, Federal Republic of Germany. 
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A main issue addressed in this paper is the occurrence of modes in a semi-infinite or 
finite Fibonacci superlattice with frequencies in the gaps of the corresponding infinite 
structure. The fields associated with them are localised at the surface(s). Experimental 
evidence for the existence of localised modes in Fibonacci superlattices has been reported 
by Merlin et a1 [ 7 ] ,  and many gap modes have been found in the phonon spectrum of a 
linear chain and the energy spectrum of a one-dimensional tight-binding model by Nori 
and Rodriguez [SI under various boundary conditions. In the case of light propagation, 
we consider a finite or semi-infinite structure covered by metallic overlayers, which are 
idealised as perfect reflectors. The gap modes in this system correspond to special guided 
waves. In the analogous acoustic problem, we assume stress-free surfaces to obtain 
surface acoustic waves. A simple method is devised to find the frequencies of the gap 
modes for the above mentioned boundary conditions. 

The acoustic excitations of an effectively semi-infinite layered elastic medium can be 
investigated experimentally by means of light scattering. Recently, Raman scattering 
studies have been performed with quasi-periodic superlattices of Si/Ge [9] and GaAs/ 
AlAs [l, 10, 111 compounds, where the acoustic mismatch is small, the light penetrates 
deeply into the superlattice and the quasi-periodicity mainly comes into play via the 
Fibonacci sequence of the elasto-optic coefficients. In contrast to these systems, we have 
here in view metallic superlattices with large acoustic mismatches that can be investigated 
by Brillouin scattering under oblique incidence. The scattering cross section is then 
determined by the acoustic spectral function at and in the vicinity of the surface of the 
superlattice [12]. For shear horizontal polarisation, the spectral function is calculated at 
the surface. Its major peaks, seen with low resolution, can be attributed to localised 
modes, while the gap modes seem to play a minor role for structures occurring on smaller 
frequency scales. These structures show self-similarity. 

2. The gap structure 

The propagation of electromagnetic waves in optically isotropic layered media is 
governed by the wave equations 

- E -’ ( Z )  AA ( x )  = ( LL) * /c$ )A (x) (2.1) 

with the transversality condition 

V [E(z )A(x ) ]  = 0. 

Here, A is the vector potential in a gauge in which the scalar potential vanishes. We 
choose the z axis to be orthogonal to the plane of stratification. The dielectric constant 
E(Z) is assumed to be independent of z within each single layer. The solutions to (2.1) 
are conveniently constructed by decomposing 

+ (2.3) A ( x )  = e’K”(A 0) elqj(2-5,) + AQ) e-Iql(2-E ) )P 

for TE polarisation and 

A ( x )  = elKx(A?)(Ki - q,R) e1q&-E1) + Ak)(Ki  + q,R) e-lq,(z-E) 4 
(2.4) 

for TM polarisation, where 
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Without loss of generality, the in-plane component K of the wavevector is chosen to 
point into the x direction, and gj denotes the position of the upper boundary of the jth 
layer. The two-component amplitude vectors (A+, A -) for neighbouring layers are 
related through the boundary conditions at the common interface. This relationship may 
be expressed in terms of transfer matrices [ 131. 

The propagation of acoustic waves of shear horizontal polarisation in a superlattice 
built of elastically isotropic layers can be treated in the same manner. The equation of 
motion for the displacement field U(.) is given by [14] 

-C:(Z)(a2/ax2 + d 2 / d Z 2 ) U Y ( X ,  2) = 02uy(x ,  2) (2.6) 
where the transverse sound velocity c,(z) is assumed to be constant in each layer. The 
solution is obtained by the ansatz (2.3), where A has to be replaced by U ,  and 

The boundary conditions involve, in addition to the transverse sound velocities, also the 
mass densities pi of the different materials [14]. In fact, the case of TM-polarised light is 
formally contained in that of shear horizontal acousticmodes in that the transfer matrices 
for the optical problem can be obtained from those of the acoustic one by setting p1 = 
p2 and replacing the transverse sound velocities by the velocities of the light in the 
different layers. 

The case of acoustic modes polarised in the sagittal plane is more complex in that the 
solution of the corresponding equation of motion involves four exponentials instead of 
only two in (2.3) and (2.4) [15]. Consequently, one has to deal with 4 X 4 matrices. In 
the special situation of normal incidence, i.e., no x- and y-dependence of the dis- 
placement field, the transverse polarisation decouples from the longitudinal one. While 
the transverse solutions of the equation of motion and boundary conditions are given by 
the shear horizontal modes in the limit K = 0, the longitudinal solutions are obtained 
by replacing the transverse by the longitudinal sound velocity in the corresponding 
quantities for the transverse modes. 

We now consider a superlattice fabricated of two types of layers, A and B, with 
thicknesses la/ and lbl in the Fibonacci sequence corresponding to the Nth generation in 
the recursive generation scheme stratified on a substrate of material A. The transfer 
matrix T(N) relating the amplitude vector of the top layer (of material A) to the 
amplitude vector of the substrate, may be calculated recursively via the relation 

T(n + 1) = T(n - l)T(n). (2.8) 
As initial values, we may choose the diagonal matrix 

and for T(2) the transfer matrix for the elementary unit of the corresponding periodic 
structure given for both the electromagnetic and the shear horizontal acoustic cases in 
[16]. The traces 2xN of the transfer matrices T(N) fulfil the recursion relation 

xni2 = 2xn+1Xn -xn-1* 
The initial values of this trace map are 

(2.10) 



(2.11) 

(2.12) 

(2.13) 

(2.14) 

for shear horizontal acoustic modes. The dielectric constants and are at this stage 
assumed to be purely real. 

For an infinite Fibonacci superlattice, bounded orbits of the trace map (2.10) cor- 
respond to physical solutions of (2.1) or (2.6) [17]. From the known properties of the 
trace map, it follows that the resulting frequency spectrum is fractal with gaps on all 
frequency scales. The allowed frequencies correspond to a Cantor set in the o/K plane 
of Lebesgues measure zero [17,18,19]. In this plane, certain lines can be identified for 
which the superlattice shows perfect transmission, i.e., the corresponding solutions to 
the equations of motion are plane-wave-like. These lines are determined by the zeros of 
the off-diagonal elements of T(2). This is the case in all three physical systems under 
consideration, if 

(2.15) 

where n is an integer and cB is the velocity of light or the transverse sound velocity in the 
B-type layers. The lines determined by (2.15) correspond to perfect transmission in the 
frequency spectrum of any two-component superlattice with isolated B-type layers of 
constant thickness b. 

0 2  = Ci[K* +- n2(d/b2)] 

The off-diagonal elements of T(2) also vanish for 

A2, = A $ .  (2.16) 

This equation has a non-trivial solution in the case of shear horizontal acoustic modes, 
if 

(2.17) 

and in the case of TM-polarised light, yielding a straight line in the w/Kplane. The perfect 
transmission on this line is essentially the Brewster phenomenon. Defining the Brewster 
angle OB in the B-type medium in the usual way by 

(2.18) 

(PACA - P B C ~  (PAC?. - PBc~B) > 0 

K = ( o/cB) sin 

we obtain 

sin OB = [EA/(EA + &B)]1’2 (2.19) 

for TM-polarised light and 

sin 8, = C B [ ( ~ ~ C :  - p i c i ) / ( p i c i  - (2.20) 

for shear horizontal acoustic waves. It has been pointed out by Sipe et a1 [6] for TM- 
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Figure 1. Main frequency gaps ( a )  for ?€-polarised light for 11 different angles of incidence 
and ( b )  for TM-polarised light and 17 different angles of incidence in medium B in a Fibonacci 
superlatticewitha = 0.8303, b = 0.5817, F~ = 16, F~ = 12.Of2000equidistant points in the 
frequency interval 0 < w < 2nco/lu + b/ are plotted those for which x2" > lo8. For 0 = 75", 
the approximate positions of several gap modes are indicated by horizontal bars. 

polarised light, that this angle of incidence of perfect transmission is independent of the 
sequence and thicknesses of the layers in a superlattice fabricated of not more than two 
materials. This of course also applies to the acoustic case. 

The gapstructure in thefrequencyspectrum of opticmodesin aFibonacci superlattice 
is illustrated in figure l ( a ,  b).  The dielectric constants have been chosen to be in the 
range of those of germanium and silicon. These diagrams may be regarded as the 
analogues of the optical band structure for a periodic superlattice [13]. The behaviour 
of the major gaps as function of the angle 8,  where 

K = &(o/c,> sin 0 (2.21) 

is remarkably similar in the periodic and quasi-periodic case. In the case of TM polar- 
isation, the gaps shrink to zero at the Brewster angle. At this angle, the transfer matrices 
T(N)  reduce to 

and 

(2.22) 

(2.23) 

or, directly, 

5'n = q.JFna + F n -  1 ( E B I E A ) ~ I  n > l  (2.24) 

where Fn are the Fibonacci numbers. The behaviour of this simple map as function of 
the frequency should determine the multifractal form of the frequency spectrum near 
the Brewster angle [ 191. 

A qualitative understanding of the resulting gap structure illustrated in figure l(a, b) 
can be achieved by applying perturbation theory to (2.1) with respect to the difference 
in the dielectric constants, starting with plane waves as the unperturbed solutions [lo]. 
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The opening of the gaps may then be regarded as the result of lifting the frequency 
degeneracy of waves with 

q = ?&kn,, 

where 

(2.25) 

kn,m = 2n(m + t n ) / z ( b  + za) (2.26) 

and 

t = (1 + v 5 ) / 2  (2.27) 

is the golden mean. For a sufficiently small difference in the dielectric constants, the 
mid-frequencies of the gaps for a given angle 8 are 

= c o k , , , / 2 f i ~ o s  8 (2.28) 

for both TE and TM polarisation, while the gap widths are, within this approximation, 
given by 

A m n , m  = lei' - &illun,mlF(kn,m)l (2.29) 

A u n , m  = - E A ' /  l ~ ~ ~ ( ~ ~ > l ~ n , m l ~ ( k ~ , m ~ l  (2.30) 

for TE and TM polarisation, respectively. Here, E is the average dielectric constant. The 
factor cos(28) in the TM case accounts for the shrinking of the gaps, when the Brewster 
angle is approached, in the limit = E ~ .  Using the results of Dharma-wardana et a1 [9], 
one obtains for the function F: 

2z2 sin(k,,,a/2) sin(z,,,z-l) 
F(kn,m 1 = 

kn$m z n , m  

zn,m = nz[(a/b)m - n]/(z-1 + a/b).  (2.31) 

The corresponding gap positions and widths at a fixed frequency are obtained anal- 

cos = cokn,m/2&u (2.32) 

A 8 n . m  = 21eA - EBIE-' lsin-1(2en,m>l lF(kn,m)l (2.33) 

A e n , m  = 21~A - E B I E - ~  lcotan(2en,m)l I F ( k n , m ) l .  (2.34) 

For large angles 8,  the above formulae do not correctly describe the behaviour of the 
gaps. 

ogously: 

3. The optical reflectivity 

As a measurable quantity in which the gap structure of the frequency spectrum of the 
light becomes directly visible, we discuss the optical reflectivity. We consider a finite 
Fibonacci superlattice of the Nth generation on a substrate of type A, bounded by a 
medium M with real dielectric constant E ~ .  The ratio R of reflected to incident intensity 
for light of frequency CO, incident from medium M on the surface of the superlattice with 
parallel component K of the wavevector, may be calculated using the formula 
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Figure 2. Reflected intensity for (a )  m-polarised and (b )  mi-polarised light incident from an 
overlayer of material B on the Fibonacci superlattice. Parameters are as in figure 1. Imaginary 
parts of the dielectric constants: e l  = 0.01, e [  = 0. 

where 

for TE-polarisation, and 

for TM-polarisation. In the case M = B, the reflection coefficient R is displayed as a 
function of angle of incidence in figure 2(a, b)  for the wavelength in vacuum A = 5 .145~ .  
While cB is taken to be real, an imaginary part of 0.01 has been given to to ensure that 
the penetration depth of the light is smaller than the extension of the finite superlattice. 
Consequently, we are effectively dealing with a semi-infinite geometry and avoid res- 
onances due to the finite thickness of the superlattice. By comparison with the reflectivity 
of a finite periodic superlattice with the same number of A-layers, it has been confirmed 
that such resonances are in fact absent. The maxima in the reflection coefficient can 
therefore all be related to frequency gaps. This can be verified by comparing figures 2 
and 3. Large gaps appear as higher peaks and smaller gaps as lower peaks. This can be 
easily understood in the following way. The larger a gap, the faster the traces x N  grow 
with increasing N ,  and consequently the smaller the penetration depth of the light in the 
superlattice and the absorption due to the imaginary part of the dielectric constants. In 
accordance with this interpretation, the reflectivity peaks become smaller and finally 
disappear in the neighbourhood of the Brewster angle eB = 49.1" in figure 2(b). 

With increasing imaginary parts of the dielectric constants, the structures of the 
curves in figure 2 become more and more smoothed. Figures 4(a, b)  show the reflection 
coefficient as function of the angle of incidence for a system with medium M chosen as 
a vacuum and the imaginary parts of and sB both taken as 0.04. 
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4 Figure 3. Main gaps for fixed wavelength I = 
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Figure 4. Reflected intensity for (a) =-polarised and (b)  m-polarised light, incident from a 
vacuum. Imaginary parts of the dielectric constants: E: = E {  = 0.04. 

4. Gapmodes 

In a finite or semi-infinite Fibonacci superlattice, there are solutions to the field equations 
(2.1), (2.2) and (2.6), which do not correspond to a bounded orbit of the trace map, but 
have their frequencies in the gaps discussed above. The field distribution of these modes 
is localised at the surfaces of the finite or semi-infinite structure. From the results in [8], 
the frequencies of these modes are expected to depend strongly on the boundary 
conditions imposed on the electromagnetic field at the upper and lower surface of the 
superlattice, as well as on whether the truncation of the sequence of layers in the 
Fibonacci order takes place after a complete generation or not. 

As an example for the case of an optical system, we consider a dielectric Fibonacci 
superlattice of the complete Nth generation bounded by perfectly reflecting materials. 
The condition for a guided wave to exist in this system can be cast into the form 

where 
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ylyTM) = ( '1 T ( N )  (:I 
2i -1 

3309 

(4.2) 

(4.3) 

for the two different polarisations. 
To study gap modes in the analogous acoustic case, we consider a finite Nth gen- 

eration superlattice with stress-free surfaces. The frequencies of the shear horizontal 
modes in this structure can be calculated from the equation 

yjvSH) = - 1 ( ') T ( N )  (:) = 0. 
2i -1 (4.4) 

The quantities y N  are real, if qA is real, otherwise purely imaginary. They obey the 
recursion relation 

Y n + l  = 2XnYn-, + Y n - 2 .  (4.5) 

The initial values are given by 

Y 1 = sin(qAa) 

Y 2  = (1/24B) [(AA + AB) sin(qAa + qBb) - (AA - AB) sin(qAa - qBb)l 

y 3  = ( 1 / 4 A ~ d ~ )  [ (AA f AB)' SiIl(2q~U + 4Bb) - (AA - 
(4.6) 

Sin(2q~U - qBb) 
+ 2(Ai - Ai) sin(qBb)]. 

Gap modes can then be found by observing changes of the sign of y N  when varying w or 
Kin  regions where the trace map is unbounded. Since the fields of the gap modes are 
largely localised at the superlattice boundaries, their positions in the w/K plane will, 
with increasing N ,  only depend on whether N is even or odd. In the recursive generation 
scheme of a Fibonacci superlattice, two different types of structures with equal upper, 
but different lower ends are built up in alternating sequence with increasing N .  Conse- 
quently, those gap modes, the positions of which do not change when solving (4.1) for 
Nand ( N  + l ) ,  are expected to be localised at the upper surface, while the others are 
localised at the lower superlattice surface. The approximate positions of some gap modes 
in large gaps at 8 = 75", localised at the upper surface, are indicated in figure 1. In 
principle, localised modes have to be expected in arbitrarily small gaps with a localisation 
length increasing with decreasing gap width. The magnitude of the localisation length 1 
may be estimated from the values xN of the trace map, which in the gap regions grow 
exponentially with the total thickness L N  of the Nth generation superlattice: 

1 = LN/1n(2xN) (4.7) 

for sufficiently large N .  
Note that in this section the equations given for the case of acoustic modes of shear 

horizontal polarisation again also apply to the case of longitudinal modes with K = 0, if 
the velocity of transverse sound is replaced by that of longitudinal sound. 
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5. The surface spectral function 

The acoustic modes of a semi-infinite layered structure can be investigated experi- 
mentally in inelastic scattering experiments. Brillouin scattering has been proved to be 
particularly adequate for this purpose [20]. The central quantities entering the cross 
section of a scattering experiment are the spectral functions SWp(z,  z ' ,  K ,  U ) ,  which are 
related to the imaginary part of the elastic Green tensor via 

SE&, z ' ,  K ,  a )  = w-l W g & ,  z ' ,  K ,  011 (5  * 1) 
in the high temperature limit (no < kgT) .  The shear horizontal modes determine the 
function Syy(z, z ' ,  [ K ,  0, 01, w) ,  which enters the cross section for crossed polarised 
Brillouin scattering [12]. A detailed quantitative calculation of the Brillouin scattering 
cross section requires the knowledge of the distribution of the electromagnetic field, in 
the Fibonacci superlattice, which, as the results in the above sections suggest, will show 
a complex behaviour in a dielectric structure. In the case of metallic superlattices, 
however, which we have in view here, the calculation will be simplified considerably if 
the skin depth for the light is of the order of magnitude of the layer thicknesses. In the 
special case of the light penetrating only the first layer, or if the mismatch of the dielectric 
constants is negligibly small, it follows from the general formulae of [21, 121 that the 
cross section for crossed polarised scattering is given by 

in a vacuum and 

in the medium,pU(z) is a Pockels coefficient and e,, and 8 are the angle of incidence and 
the scattering angle, respectively. 

Using the method outlined in [14], one may express the Green function 
gr,,(z, z ' ,  K ,  o) in the first layer of a finite Fibonacci superlattice of the Nth generation 
in terms of the transfer matrix T(N): 

( 5 . 6 ~ )  
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Figure 5. Spectral function Syy(O, 0, [K, 0,0],  0) 
for a Fibonacci superlattice with A/B = Nb/Cu 
andKa = 0.5,a/b = 2. Parametersasin[14]. Fre- 
quency resolution: ga = 40 m s-l. The approxi- 
mate positions of the main gaps are marked by 
horizontal bars. Estimated penetration depths of 
localisedmodesinunitsofa: (1)43, (2)21, (3) 19, 
(4) 10, ( 5 )  10, (6) 14, (7 )  14. 

- 

w a  ( l o 3  m 5-l) 
Figure 6 .  Part of the surface spectral function for 
the system and geometry of figure 5 with higher 
resolution (ga = 1.0 m s-' for the inset and ga = 
0.33 m s-l for the main figure). Estimated pen- 
etration depths of the indicated localised modes 
in units of 1000a: (I) 5, (2) 2, (3) 3, (4) 9, (5) 0.3, 
(6) 2.5. 

t -  = T, , (N)  - T*I(N).  (5.6b) 

As expected, the denominator in (5 .5)  is proportional to y N .  The spectral function in 
(5.2) has been calculated numerically at the surface of the superlattice, i.e., for z = z' = 
0. For sufficiently small skin depth of the light, this function should bear the basic 
features of the cross section for crossed polarised Brillouin scattering. The system 
Nb/Cu with Ka = 0.5 and K b  = 0.25 has been chosen, because of its large acoustical 
mismatch, and because for this system, a direct comparison with the results of Camley 
et a1 [14] for the periodic case is possible. In the numerical calculation of the Green 
function ( 5 . 9 ,  a small imaginary part q has been added to the frequency w .  This 
corresponds to convolving the spectral function with a Lorentzian resolution function 
of width q. The effect of the imaginary part can also be regarded as introducing a finite 
penetration depth for the acoustic modes in a way analogous to that of the imaginary 
part of the dielectric constant for the optic modes. The parameters may then be chosen 
such that the boundary condition at the lower surface has no influence on the shape of 
the spectral function at the upper surface. The spectral function for the system under 
consideration shown in figure 5 is clearly dominated by localised modes. Their pen- 
etration depths have been estimated from (4.7) to extend in all cases over a considerable 
number of layers. They therefore have to be regarded as closely related to the ordering 
of the layers in the Fibonacci sequence. The high peak in the frequency interval 
o1 < w < w2,  where qA is real, while qB is imaginary, occurs in the spectral function of 
the corresponding periodic structure at the same position [ 141. The penetration depth of 
the localised mode associated with it is larger in the Fibonacci structure. A characteristic 
feature of the surface spectral function in figure 5 is the structure bounded by the pair of 
peaks ( 2 )  and (3), which seems to be replicated twice at higherfrequencies. A comparison 
between figures 5 and 6 reveals the self-similarity of the spectral function in this frequency 
range with the reproduction of a characteristic triple structure on smaller frequency 
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1 Figure 7. Spectral function S,,(O, 0, [ O , O ,  01, w) 
for a Fibonacci superlattice with A/B = AI/W 
Mass densities and longitudinal sound velocities 
are as in [15] Frequency resolution v u  = 
20 m s-’ 

, ,  i 
0 4 8 12 16 2 0  

w a  i103 m S-’I 

scales [22,23]. Further localised modes have been found on the frequency scale of figure 
6, as indicated, in smaller gaps with consequently larger penetration depths. Localised 
modes have in fact to be expected in gaps of arbitrarily small width. The peak positions 
in figure 6, however, no longer always coincide precisely with the frequency of gap 
modes. With decreasing gap width and thus increasing delocalisation of the cor- 
responding gap modes, the latter become less important for the surface spectral function, 
and those modes that correspond to bounded orbits of the trace map gain increasing 
influence on the structure of the spectral function on smaller frequency scales. 

Finally, we give an example for the spectral function S,,(O, 0, 0, U), which is deter- 
mined by the longitudinal modes with K = 0. This function is directly proportional to 
the contribution of pure ripple scattering from the surface of the superlattice to the 
Brillouin scattering cross section for normal incidence and zero scattering angle. In the 
system Al/W we have chosen here, this scattering mechanism is expected to be the 
dominant one. The acoustic modes of sagittal polarisation for periodic superlattices of 
these materials with a large acoustic mismatch have been investigated in [15]. In figure 
7 the surface spectral function for the corresponding Fibonacci sequence of layers is 
shown with a/b = 2. The three pairs of peaks marked (l), (2) and (3) can again be 
identified as resulting from localised modes in frequency gaps. 

It is hoped that the theoretical results presented here will give rise to further exper- 
imental investigations of quasi-periodic superlattices, in particular light-scattering 
experiments on metallic Fibonacci structures. For a full theoretical evaluation of the 
Brillouin scattering cross section for non-zero angle of incidence or scattering angle and 
arbitrary polarisation of the incident and scattered light, the acoustic modes of sagittal 
polarisation have to be taken into account. Since they are associated with 4 X 4 instead 
of 2 x 2 transfer matrices, the concepts used in the above analysis are not directly 
applicable, and new interesting features may be expected in physical quantities related 
to them. 
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